

Representations and Algorithms for Interactive Relighting Nick Michiels

Promoter: Prof. Dr. Philippe Bekaert

[Matterport, 2016]

Real Estate

[Hilsmann et al., Eurograhics 2013]

Clothing Industry

[Microsoft Hololens, 2016]

Augmented Reality

immersive experience view-dependent

$$L_r(x \to \omega_o) = \int_{\Omega} V(x \leftarrow \omega_i) * \tilde{\underline{L}}(x \leftarrow \omega_i) * \tilde{\rho}(x, \omega_i, \omega_o) d\omega_i$$

$$L_{r}(x \to \omega_{o}) = \int_{\Omega} V(x \leftarrow \omega_{l}) * \tilde{L}(x \leftarrow \omega_{l}) * \tilde{\rho}(x, \omega_{l}, \omega_{o}) d\omega_{l}$$
Forward
Rendering
$$\int_{\Omega} \bigvee_{\text{visibility map}} * \bigvee_{\text{environment map}} * \bigvee_{\text{BRDF slice}} d\omega_{l} \quad rendered image$$

$$Relighting
\int_{\Omega} \bigvee_{\text{visibility map}} * \bigvee_{\text{environment map}} * \bigvee_{\text{BRDF slice}} d\omega_{l} \quad rendered image$$

1. Relighting of **Virtual Objects**

2. Relighting of **Real Objects**

1. Texture-illumination ambiguity

2. Simulation of light propagation

Triple Product Integral

$$L_r(x \to \omega_o) = \int_{\Omega} V(x \leftarrow \omega) * \tilde{L}(x \leftarrow \omega) * \tilde{\rho}(x, \omega, \omega_o) d\omega$$

pixel domain
$$= \int_{\Omega} \left[\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} V_{i} \Psi_{i}(\omega) * \sum_{j=1}^{\infty} L_{j} \Psi_{j}(\omega) * \sum_{k=1}^{\infty} \tilde{\rho}_{k} \Psi_{k}(\omega) d\omega \right]$$
new basis representation
$$= \int_{\Omega} \sum_{i=1}^{\infty} V_{i} \Psi_{i}(\omega) * \sum_{j=1}^{\infty} L_{j} \Psi_{j}(\omega) * \sum_{k=1}^{\infty} \tilde{\rho}_{k} \Psi_{k}(\omega) d\omega$$
triple product
$$= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} V_{i} \tilde{L}_{j} \tilde{\rho}_{k} C_{ijk} \qquad \left[C_{ijk} = \int_{\Omega} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d\omega \right]$$

Spherical Harmonics

- Original approach [Sloan et al., 2002]
- Equivalent of Fourier series on the sphere
- Set of orthogonal functions
- Linear combination of sine and cosine waves

+ Efficient

- Low-frequency lighting effects only

2D Haar Wavelets

- Haar Tripling Coefficient Theorem [Ng et al., 2004]
- Piecewise constant functions
- Orthonormal basis

+ Few coefficients+ All-frequency lighting

1. High-Order Wavelets

2. Spherical Radial Basis Functions

Why high-order wavelets?

15

- Representation should be tailored to the signal
- Smooth high-order wavelets (e.g. Daubechies-4) require an order of magnitude less coefficients to represent a smooth signal

universiteit hasselt

Why is it so difficult to use high-order wavelets?

$$C_{ijk} = \int_{\Omega} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

tensor of binding coefficients

Why is it so difficult to use high-order wavelets?

$$C_{ijk} = \int_{\Omega} \Psi_i(\omega) \Psi_j(\omega) \Psi_k(\omega) d\omega$$

tensor of binding coefficients

iMinds

EDM

universiteit hasselt

- Naive approach
- Hierarchical approach
- Symmetry
- Wavelet sliding
- Vanishing moments

Test example

- *D*: dimensionality of the integral (double, triple, quadruple)
- S_i : signal of r x r resolution ($i = 1, \dots, D$)
- N: number of dilations and translations of the basis function for S_i

- Naive approach
 - Iterate over all binding coefficients
 - $O(N^D r^2)$
 - 4, 7×10^{21} operations
 - r = 512, N = 262144, D = 3

- Hierarchical approach
 - Exploiting support of wavelet
 - Non-overlapping cases can be skipped
 - $O(NC (\log N)^{D-1} r^2)$
 - C relates to the enlargement of support
 - * 3, 2×10^{13} operations
 - r = 512, N = 262144, D = 3

universiteit hasselt

- Symmetry
 - Homogeneous products
 - $\int \Psi_i \Psi_j = \int \Psi_j \Psi_i$

 Ψ_{Di}

- Wavelet sliding
 - Reuse duplicate branches in the tensor

slide factor
$$S = (y - x) \times support(\Psi_{i=x})$$

- Wavelet sliding
 - Reuse duplicate branches in the tensor
 - Calculate products for log *N* branches instead of *N* branches
 - $O(C(\log N)^{D} r^{2})$
 - C relates to the enlargement of support
 - * 1, 5×10^9 operations
 - r = 512, N = 262144, D = 3

• Vanishing moments

- High-order wavelets provide more vanishing moments
- Causes zero integrals for certain translations within their support
- Increased sparsity in tensor of binding coefficients
- Identified and incorporated in wavelet sliding algorithm

Ψ_i	Ψ_j	Ψ_k	resolution	non-zero coeffs	total coeffs	sparseness
Haar-2	Haar-2	Haar-2	8×8	1288	2.6E+5	0.4913%
Daub-4	Daub-4	Daub-4	8×8	99088	2.6E+5	37.7991%
Daub-6	Daub-6	Daub-6	8×8	214252	2.6E+5	81.7307%
Coiflet-5	Coiflet-5	Coiflet-5	8×8	186706	2.6E+5	71.2227%
Haar-2	Daub-4	Daub-4	8×8	31960	2.6E+5	12.1918%
Haar-2	Coiflet-5	Coiflet-5	8×8	59902	2.6E+5	22.8508%

Ψ_i	Ψ_j	Ψ_k	resolution	non-zero coeffs	total coeffs	sparseness
Haar-2	Haar-2	Haar-2	16×16	1288	1.6E+7	0.0443%
Daub-4	Daub-4	Daub-4	16×16	99088	1.6E+7	8.2263%
Daub-6	Daub-6	Daub-6	16×16	214252	1.6E+7	25.9928%
Coiflet-5	Coiflet-5	Coiflet-5	16×16	186706	1.6E+7	20.8433%
Haar-2	Daub-4	Daub-4	16×16	31960	1.6E+7	1.6133%
Haar-2	Coiflet-5	Coiflet-5	16×16	59902	1.6E+7	3.7315%

Ψ_i	Ψ_j	Ψ_k	resolution	non-zero coeffs	total coeffs	sparseness
Haar-2	Haar-2	Haar-2	32×32	38920	1.1E+9	0.0036%
Daub-4	Daub-4	Daub-4	32×32	9720040	1.1E+9	0.9052%
Daub-6	Daub-6	Daub-6	32×32	29582032	1.1E+9	2.7550%
Coiflet-5	Coiflet-5	Coiflet-5	32×32	16408816	1.1E+9	1.5282%
Haar-2	Daub-4	Daub-4	32×32	1555120	1.1E+9	0.1448%
Haar-2	Coiflet-5	Coiflet-5	32×32	2715112	1.1E+9	0.2529%

Ψ_i	Ψ_j	Ψ_k	resolution	non-zero coeffs	total coeffs	sparseness
Haar-2	Haar-2	Haar-2	64×64	192520	6.9E+10	0.0003%
Daub-4	Daub-4	Daub-4	64×64	47918464	6.9E+10	0.0697%
Daub-6	Daub-6	Daub-6	64×64	145473456	6.9E+10	0.2117%
Coiflet-5	Coiflet-5	Coiflet-5	64×64	48918464	6.9E+10	0.0712%
Haar-2	Daub-4	Daub-4	64×64	7327168	6.9E+10	0.0107%
Haar-2	Coiflet-5	Coiflet-5	64×64	8699044	6.9E+10	0.0127%

Render Application

Daubechies-6 wavelets

universiteit ▶▶hasselt

iMinds

What Is Wrong with Wavelets?

- 2D Haar wavelets [Ng et al, 2004]
- Spherical Haar wavelets [Put et al., 2014]
- High-order wavelets [Michiels et al., 2014]

- + Few coefficients
- + All-frequency
- Preprocessing

- No efficient rotation operator [Wang et al., 2006]

1. High-Order Wavelets

2. Spherical Radial Basis Functions

Spherical Radial Basis Functions (SRBFs)

- Radial Basis Functions, defined on the sphere
 - Poisson($\omega, \boldsymbol{c}, \lambda, \mu$) = $\mu \frac{1-\lambda^2}{(1-2\lambda(\omega \cdot \boldsymbol{c})+\lambda^2)^{3/2}}$
 - Multiquadrati $c(\omega, \boldsymbol{c}, \lambda, \mu) = \mu \sqrt{1 + (\lambda(\omega \cdot \boldsymbol{c}))^2}$
 - Gaussian(ω, c, λ, μ) = $\mu e^{\lambda(\omega \cdot c 1)}$

+ All-frequency

- + Decent compression performance
- + Efficient rotation operator
- + Analytic evaluation of the binding coefficients

	all-frequency	dynamic lighting	dynamic geometry	dynamic brdf
Sloan et al., 2003	×	×	×	×
Ng et al., 2004	\checkmark	×	×	×
Tsai and Shih, 2006	\checkmark	rotation only	×	×
Haber et al., 2009	\checkmark	×	×	×
Wang et al., 2009	\checkmark	rotation only	×	\checkmark
Lam et al., 2010	\checkmark	rotation only	×	×
Iwasaki et al., 2012	\checkmark	rotation only	low-poly	\checkmark
our method	\checkmark	\checkmark	\checkmark	\checkmark

Current techniques constrain one or several factors
 + Our approach is able to dynamically construct and update all three factors

Dynamic Materials

SRBFs

+ Directly approximated with Gaussian lobes + Phong, Cook-Torrance, Ward, Blinn-Phong, ...

[Wang et al., 2009]

Previous approaches

- Sampled in pixel domain for _ each BRDF slice (x, ω_i, ω_o)
- On-the-fly transformation to wavelets

Lambertian

Diffuse Phong

Glossy Phong

Specular Phong

[Haber et al., 2009]

Our approach (SRBFs)

- + Combination of PRT and voxelization
- + One-pass voxelization [Crassin and Green, 2012]
- + Mapping of visibility SRBFs to voxel cones
- + Entirely on GPU

Previous approaches

- Rely on precomputation
- Limited to static scenes
- Ray tracing in pixel domain [Haber et al., 2009]
- Approximated with Spherical Signed Distance Functions [Wang et al., 2009]
- Projecting bounding volumes on hemisphere [Iwasaki et al., 2012]

Dynamic Visibility – Cone tracing

Dynamic Visibility – Mapping SRBF to Visibility Cone

- Sampling of visibility in the SRBF lobe
- Mapping SRBF to a corresponding visibility cone

Dynamic Visibility – Subsampling Scheme

- Subsampling of SRBF lobe is essential
 - Avoid integration of high-frequency visibility detail over larger area of the hemisphere
 - Circle packing: maximize density of subsampled cones
 - Adaptive subsampling based on BRDF lobe

Dynamic Lighting

Our approach (SRBFs)

- + HDR omnidirectional photo/video
- + SRBF fitting
- + Multi-scale algorithm using fixed grid
- + SRBF centers defined by Healpix distribution
- + Entirely on GPU

Previous approaches

- Optimization [Tsai and Shih, 2006]
 - + Good compression
 - Slow
- Least-square projection [Lam et al., 2010]

Dynamic Lighting

• Multi-scale residual transform

inceasing number of SRBF levels

Overlapping Lighting SRBFs

Overlapping Lighting SRBFs

Peak Detection

- Problem: bright area light sources
 - Requires too fine-grained subsampling of visibility cones
- + Solution: peak detection
 - Treated as a special case
 - Thresholding / connected components / fitting

Results

Results

Results

Relighting Use Cases

1. Relighting of **Virtual Objects**

Relighting of Virtual Objects

Relighting of Virtual Objects

Relighting Use Cases

1. Relighting of **Virtual Objects**

- Inverse rendering using wavelets [Haber et al., 2009]
 - Hierarchical refinement using smooth high-order wavelets

- Inverse rendering using wavelets [Haber et al., 2009]
 - Hierarchical refinement using high-order wavelets
 - Temporal information

- Inverse rendering using wavelets [Haber et al., 2009]
 - Hierarchical refinement using high-order wavelets
 - Temporal information
 - Near-field lighting

- Inverse rendering using wavelets [Haber et al., 2009]
 - Hierarchical refinement using high-order wavelets
 - Temporal information
 - Near-field lighting
- Inverse rendering using SRBFs [Haber et al., 2009]

Relighting of Real Objects - Inverse Rendering using SRBFs

EDM

Relighting of Real Objects - Inverse Rendering using SRBFs

	Haar wavelets [Haber et al., 2009]	SRBF [ours]
# lighting coefficients	1024	1020
Δt optimize lighting	1089 s	10 s
# BRDF weights	2689 (per vertex)	906240 (per texel)
Δt optimize BRDF weights	3 s	180 s
Δt optimize one BRDF weights	$9.4 \times 10^{-4} s$	$1.9 \times 10^{-4} s$
Δt full optimization	184 min	29 min
Δ <i>t</i> rendering reconstruction	13.403 s	< 0.1 s

Conclusions

- General triple product theorem for high-order wavelets
 - + Triple product rendering for a mixture of different wavelets bases
 - + Wavelets tailored to the signal
 - + Few coefficients to estimate
 - Rather slow
- Dynamic triple product rendering using SRBFs
 - + Interactive and real-time triple product rendering
 - + All three factors are dynamic
 - + Preview rendering of estimates
 - Slightly more coefficients: quality/speed tradeoff

Take Home Messages

- Underlying representation <u>does</u> have an impact on relighting applications
 - Representation tailored to the signal
 - Representation tailored to the application
 - Compression/time tradeoff

Thank you for your attention!

Thank you for your attention

High-Order Wavelets in Render Application

High-Order Wavelets in Render Application

High-Order Wavelets in Render Application

2D wavelet basis

optimal choice of wavelet basis

Triple product rendering with SRBFs

+Analytic Evaluation of the binding coefficients

$$C_{ijk} = \int_{\Omega} \Psi_{i}(\omega) \Psi_{j}(\omega) \Psi_{k}(\omega) d\omega \qquad \Psi_{i,j,k} = G(\omega, c, \lambda, \mu) = \mu e^{\lambda(\omega \cdot c - 1)}$$
$$= \int_{\Omega} G(\omega, c_{V}, \lambda_{V}, \mu_{V}) G(\omega, c_{L}, \lambda_{L}, \mu_{L}) G(\omega, c_{\rho}, \lambda_{\rho}, \mu_{\rho}) d\omega$$
$$= \mu_{V} \mu_{L} \mu_{\rho} e^{-(\lambda_{V} + \lambda_{L} + \lambda_{\rho})} \int_{\Omega} e^{\omega \cdot (\lambda_{V} c_{V} + \lambda_{L} c_{L} + \lambda_{\rho} c_{\rho})} d\omega$$
$$= \mu_{V} \mu_{L} \mu_{\rho} e^{-(\lambda_{V} + \lambda_{L} + \lambda_{\rho})} 4\pi \frac{\sinh \|\lambda_{V} c_{V} + \lambda_{L} c_{L} + \lambda_{\rho} c_{\rho}\|}{\|\lambda_{V} c_{V} + \lambda_{L} c_{L} + \lambda_{\rho} c_{\rho}\|} \qquad [Tsai and Shih, 2006]$$

Rotation Operator

bin level	BRDF λ	# bins	mean # overlapping SRBFs	max level
1	2,0	45	60	1
2	4,0	153	252	2
3	16,0	561	312	3
4	32,0	2145	608	4
5	128,0	2145	182	5
6	256,0	8320	109	5
7	512,0	33153	70	5

Dynamic Visibility – Voxel Density

	512	increasing voxel volume	64
🦱 iMinds	universiteit		

Dynamic Visibility – Voxel Density

Dynamic Lighting

Peak Detection

without peak detection

with peak detection

Relighting of Real Objects - Inverse Rendering using SRBFs

	Haar wavelets [Haber et al., 2009]	SRBF (ours)
input resolution	960×540	960×540
# images	5	5
# vertices	2689	2689
# lighting coefficients	1024	1020
# materials	3	3
# BRDF weights	2689 (per vertex)	906240 (per texel)
Δt optimize lighting	1089.340 s	10.189 s
Δt optimize materials	2.516 s	6.973 s
Δt optimize BRDF weights	2.518 s	180.837 s
Δt optimize one BRDF weights	$1.36 \times 10^{-4} s$	$1.99 \times 10^{-4} s$
Δt one iteration	1099.680 s	201.240 s
Δt full optimization	184 min	29 min
Δt rendering reconstruction	13.403 <i>s</i>	0.022 s

Relighting of Real Objects – Intrinsic Image Decomposition

• Intrinsic images decomposition using SRBFs [Barron and Malik, 2015]

 $\underset{G,R,L}{\text{maximize}} P(G)P(R)P(L)$

subject to I = R + S(G, L)

Relighting of Virtual Objects [AIVIE, 2014]

Relighting of **Real Objects** [ICT-FP7 SCENE, 2014]

SCENE Relighting

